Cuda hello world
Concepts
Le framework CUDA permet d'utiliser le GPU pour faire des calculs généraux, habituellement réalisés par le CPU. CUDA est une extension en C/C++ qui propose une API pour gérer le GPU et elle distingue deux entités:
- l'entité host ou hôte pour le CPU
- l'entité device ou périphérique pour le GPU
De manière générale on essayera de faire le traitement sérialisé sur le CPU et de décharger les calculs parallélisés sur le GPU.
La difficulté réside dans le faite que CPU et GPU utilisent deux espaces mémoire séparés... qu'il va falloir gérer par le biais de pointeurs et fonctions spécifiques !
Les programmes utilisant le GPU se déroule en 5 étapes:
- instanciation des instructions et variables dans la mémoire centrale (RAM)
- copie des instruction et variables dans la mémoire du GPU
- exécution des instruction et lecture des variables par le GPU
- modification des variables dans la mémoire du GPU
- rapatriement des variables modifiées par le GPU dans la mémoire centrale
Les bases
L'API CUDA permet d'exécuter une fonction sur le GPU grâce à la notation chevrons <<<...>>> :
fonction<<<NB_BLOCK, NB_THREAD>>>();
- fonction : correspond au nom de la fonction
- NB_BLOCK : correspond au nombre de blocs utilisés
- NB_THREAD : correspond au nombre de threads par bloc
La fonction appelée doit être précédée du spécificateur __global__ pour préciser au compilateur que sont exécution se fait sur le GPU:
__global__ void fonction(){
// choses à faire
}
Les fichiers contenant du code CUDA doivent impérativement porter l'extension .cu et être compilés avec le compilateur CUDA : nvcc
# nvcc hello.cu -o hello
Programmation CPU vs. GPU
Ci-dessous l'exemple classique du Hello World utilisant le CPU:
#include <stdio.h>
int main(void) {
printf("Hello World du CPU\n");
return EXIT_SUCCESS;
}
Si nous voulons utiliser le GPU il faut sortir l'instruction à exécuter (ici le printf) dans une fonction __global__ puis lancer son exécution grâce à la notation chevrons:
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cuda.h>
__global__ void cuda_hello(){
printf("Hello World du GPU\n");
}
int main(void) {
printf("Hello World du CPU\n");
cuda_hello<<<1,1>>>();
return EXIT_SUCCESS;
}
Synchronisation CPU / GPU
Le programme précédent affichera le résultat ci-dessous :
Hello World du CPU
Le GPU n'a simplement rien fait. Il n'était pas informé de quoique ce soit car les instructions n'ont pas été copiées sur la mémoire du GPU. Cela se fait grâce à la fonction cudaDeviceSynchronize qu'il faut ajouter juste après l'instruction chevron:
...
cuda_hello<<<1,1>>>();
cudaDeviceSynchronize();
...
Et nous avons bien le résultat attendu:
Hello World du CPU Hello World du GPU
Manipulation mémoire
Le programme ci-dessous permet d'afficher le nom passé en paramètre :
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cuda.h>
__global__ void say_my_name(char * name){
printf("GPU says : %s\n", name);
}
int main(int argc, char * argv[]) {
if(argc < 2){
printf("I don't know your name !");
return EXIT_FAILURE;
}
printf("CPU says : %s\n", argv[1]);
say_my_name<<<1,1>>>(argv[1]);
cudaDeviceSynchronize();
return EXIT_SUCCESS;
}
Le programme précédent affichera :
# name.bin tala CPU says : tala
Il manque, encore une fois, l’exécution du code côté GPU... Ce qui est normal car la variable passée en paramètre argv[1] est dans la mémoire centrale donc inaccessible côté GPU !
Pour pouvoir l'utiliser, il faut copier le contenu de cette variable dans la mémoire du GPU.
Cela se fait en trois étapes:
- on fait l'allocation mémoire avec cudaMalloc
- on procède à la copie avec cudaMemCpy
- on procède à la libération mémoire avec cudaFree
cudaMalloc prend en paramètre un pointeur côté CPU et la taille de l'allocation :
cudaMalloc(void ** ptr, size_t size);
Le pointeur ptr permet de faire le lien entre les variables dans la mémoire centrale CPU et celle dans la mémoire graphique.
cudaMemCpy prend en paramètre :
- un pointeur source
- un pointeur destination
- la taille de la copie
- le sens de la copie
cudaMemCpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind direction);
Notez que le paramètre direction de type cudaMemcpyKind peut prendre les valeurs suivantes:
- cudaMemcpyHostToDevice (CPU → GPU)
- cudaMemcpyDeviceToHost (GPU → CPU)
cudaFree prend en paramètre le pointeur côté GPU à libérer
cudaFree(void *ptr);
Ce qui donne les modifications suivantes :
...
printf("CPU says : %s\n", argv[1]);
char * name;
int size = sizeof(char) * strlen(argv[1]) + 1;
cudaMalloc(&name, size);
cudaMemcpy(name, argv[1], size, cudaMemcpyHostToDevice);
say_my_name<<<1,1>>>(name);
cudaDeviceSynchronize();
cudaFree(name);
...
Pour avoir le résultat attendu:
# ./name.bin tala CPU says : tala GPU says : tala
Parallélisation
Le gros avantage du GPU c'est sa capacité à paralléliser l'exécution du code et pour cela, il faut s'attarder sur la syntaxe chevron:
- le premier paramètre permet de choisir le nombre de groupe de threads
- le deuxième correspond au nombre de threads dans chaque groupe
On peut mixer les deux jusqu'à un total de 1024, comme expliqué ici :
- on peut faire <<<1024, 1>>> ou <<<128,8>>> (128 * 8 = 1024)
- on ne peut pas faire <<<256, 10>>> car 256 * 10 = 2560 > 1024
Il faut comprendre que le code exécuté par les différentes instances est le même, il faudra donc modifier son comportement grâce au numéro de groupe ou de thread. Ces numéros sont accessible grâce aux variables :
- threadIdx : id du thread
- blockIdx : id du bloc
- blockDim : dimension de chaque bloc
On peut schématiser la parallélisation effectuée par le GPU comme la matrice suivante:
Dans l'exemple suivant on affiche les différents indexes :
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cuda.h>
__global__ void whoami() {
printf("blockDim [%d], blockIdx [%d], threadIdx[%d]\n", blockDim.x, blockIdx.x, threadIdx.x);
}
int main(int argc, char *argv[]) {
whoami<<<2,3>>>();
cudaDeviceSynchronize();
return EXIT_SUCCESS;
}
Cette exemple donne la sortie suivante:
blockDim [3], blockIdx [1], threadIdx[0] blockDim [3], blockIdx [1], threadIdx[1] blockDim [3], blockIdx [1], threadIdx[2] blockDim [3], blockIdx [0], threadIdx[0] blockDim [3], blockIdx [0], threadIdx[1] blockDim [3], blockIdx [0], threadIdx[2]
On peut remarquer que:
- blockDim.x correspond au deuxième paramètre de la fonction chevron
- la valeur maximum prise par blockIdx.x correspond au premier paramètre de la fonction chevron (moins un car c'est l'index de la matrice)
- les valeurs de